Reaction–diffusion–branching models of stock price fluctuations
Lei-Han Tang and
Guang-Shan Tian
Physica A: Statistical Mechanics and its Applications, 1999, vol. 264, issue 3, 543-550
Abstract:
Several models of stock trading (Bak et al., Physica A 246 (1997) 430.) are analyzed in analogy with one-dimensional, two-species reaction–diffusion–branching processes. Using heuristic and scaling arguments, we show that the short-time market price variation is subdiffusive with a Hurst exponent H=1/4. Biased diffusion towards the market price and blind-eyed copying lead to crossovers to the empirically observed random-walk behavior (H=1/2) at long times. The calculated crossover forms and diffusion constants are shown to agree well with simulation data.
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198005494
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:264:y:1999:i:3:p:543-550
DOI: 10.1016/S0378-4371(98)00549-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().