Toy model for molecular motors
Hailemariam Ambaye and
Klaus W. Kehr
Physica A: Statistical Mechanics and its Applications, 1999, vol. 267, issue 1, 111-123
Abstract:
A hopping model for molecular motors is presented consisting of a state with asymmetric hopping rates with period 2 and a state with uniform hopping rates. State changes lead to a stationary unidirectional current of a particle. The current is explicitly calculated as a function of the rate of state changes, including also an external bias field. The Einstein relation between the linear mobility of the particle and its diffusion coefficient is investigated. The power input into the system is derived, as well as the power output resulting from the work performed against the bias field. The efficiency of this model is found to be rather small.
Keywords: Hopping model; Molecular motors; Linear mobility (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198006621
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:267:y:1999:i:1:p:111-123
DOI: 10.1016/S0378-4371(98)00662-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().