EconPapers    
Economics at your fingertips  
 

Discrete and continuous linearizable equations

S. Lafortune, B. Grammaticos and A. Ramani

Physica A: Statistical Mechanics and its Applications, 1999, vol. 268, issue 1, 129-141

Abstract: We study the projective systems in both continuous and discrete settings. These systems are linearizable by construction and thus, obviously, integrable. We show that in the continuous case it is possible to eliminate all variables but one and reduce the system to a single differential equation. This equation is of the form of those singled-out by Painlevé in his quest for integrable forms. In the discrete case, we extend previous results of ours showing that, again by elimination of variables, the general projective system can be written as a mapping for a single variable. We show that this mapping is a member of the family of multilinear systems (which is not integrable in general). The continuous limit of multilinear mappings is also discussed.

Date: 1999
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199000266
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:268:y:1999:i:1:p:129-141

DOI: 10.1016/S0378-4371(99)00026-6

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:268:y:1999:i:1:p:129-141