Stationary motion of the adiabatic piston
Ch. Gruber and
J. Piasecki
Physica A: Statistical Mechanics and its Applications, 1999, vol. 268, issue 3, 412-423
Abstract:
We consider a one-dimensional system consisting of two infinite ideal fluids, with equal pressures but different temperatures T1 and T2, separated by an adiabatic movable piston whose mass M is much larger than the mass m of the fluid particles. This is the infinite version of the controversial adiabatic piston problem. The stationary non-equilibrium solution of the Boltzmann equation for the velocity distribution of the piston is expressed in powers of the small parameter ε=m/M, and explicitly given up to order ε2. In particular it implies that although the pressures are equal on both sides of the piston, the temperature difference induces a non-zero average velocity of the piston in the direction of the higher temperature region. It thus shows that the asymmetry of the fluctuations induces a macroscopic motion despite the absence of any macroscopic force. This same conclusion was previously obtained for the non-physical situation where M=m.
Keywords: Boltzmann equation; Adiabatic piston; Stationary state; Asymptotic expansion (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199000953
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:268:y:1999:i:3:p:412-423
DOI: 10.1016/S0378-4371(99)00095-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().