EconPapers    
Economics at your fingertips  
 

Discrete random walk models for symmetric Lévy–Feller diffusion processes

Rudolf Gorenflo, Gianni De Fabritiis and Francesco Mainardi

Physica A: Statistical Mechanics and its Applications, 1999, vol. 269, issue 1, 79-89

Abstract: We propose a variety of models of random walk, discrete in space and time, suitable for simulating stable random variables of arbitrary index α (0<α⩽2), in the symmetric case. We show that by properly scaled transition to vanishing space and time steps our random walk models converge to the corresponding continuous Markovian stochastic processes which we refer to as Lévy–Feller diffusion processes.

Keywords: Random walks; Stable probability distributions; Diffusion (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199000825
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:269:y:1999:i:1:p:79-89

DOI: 10.1016/S0378-4371(99)00082-5

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:269:y:1999:i:1:p:79-89