Minority game with arbitrary cutoffs
N.f Johnson,
P.m Hui,
Dafang Zheng and
C.w Tai
Physica A: Statistical Mechanics and its Applications, 1999, vol. 269, issue 2, 493-502
Abstract:
We study a model of a competing population of N adaptive agents, with similar capabilities, repeatedly deciding whether to attend a bar with an arbitrary cutoff L. Decisions are based upon past outcomes. The agents are only told whether the actual attendance is above or below L. For L∼N/2, the game reproduces the main features of Challet and Zhang's minority game. As L is lowered, however, the mean attendances in different runs tend to divide into two groups. The corresponding standard deviations for these two groups are very different. This grouping effect results from the dynamical feedback governing the game's time-evolution, and is not reproduced if the agents are fed a random history.
Keywords: Adaptive systems; Agent-based models; Self-organization (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843719900117X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:269:y:1999:i:2:p:493-502
DOI: 10.1016/S0378-4371(99)00117-X
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().