Dynamic criticality in driven disordered systems: role of depinning and driving rate in Barkhausen noise
Bosiljka Tadić
Physica A: Statistical Mechanics and its Applications, 1999, vol. 270, issue 1, 125-134
Abstract:
We study Barkhausen noise in a diluted two-dimensional Ising model with the extended domain wall and weak random fields occurring due to coarse graining. We report two types of scaling behavior corresponding to (a) low disorder regime where a single domain wall slips through a series of positions when the external field is increased, and (b) large disorder regime, which is characterized with nucleation of many domains. The effects of finite concentration of nonmagnetic ions and variable driving rate on the scaling exponents is discussed in both regimes. The universal scaling behavior at low disorder is shown to belong to a class of critical dynamic systems, which are described by a fixed point of the stochastic transport equation with self-consistent disorder correlations.
Keywords: Barkhausen avalanches; Depinning; Universality; Dynamic critical states (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199001430
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:270:y:1999:i:1:p:125-134
DOI: 10.1016/S0378-4371(99)00143-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().