EconPapers    
Economics at your fingertips  
 

Some results and a conjecture for Manna's stochastic sandpile model

Deepak Dhar

Physica A: Statistical Mechanics and its Applications, 1999, vol. 270, issue 1, 69-81

Abstract: We present some analytical results for the stochastic sandpile model studied earlier by Manna. In this model, the operators corresponding to particle addition at different sites commute. The eigenvalues of operators satisfy a system of coupled polynomial equations. For an L×L square, we construct a nontrivial toppling invariant, and hence a ladder operator which acting on eigenvectors of the evolution operator gives new eigenvectors with different eigenvalues. For periodic boundary conditions in one direction, one more toppling invariant can be constructed. We show that there are many forbidden subconfigurations, and only an exponentially small fraction of all stable configurations are recurrent. We obtain rigorous lower and upper bounds for the minimum number of particles in a recurrent configuration, and conjecture a formula for its exact value for finite-size rectangles.

Keywords: Sandpile model; Self-organized criticality; Manna model; Toppling invariants; Forbidden configuration; Minimal configurations (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199001491
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:270:y:1999:i:1:p:69-81

DOI: 10.1016/S0378-4371(99)00149-1

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:270:y:1999:i:1:p:69-81