Biological grand universality and its physical challenge
Azbel′, Mark Ya.
Physica A: Statistical Mechanics and its Applications, 1999, vol. 273, issue 3, 486-494
Abstract:
Presented quantitative laws of metabolism, mortality and evolution are valid for animals from bacteria to mammals and demonstrate grand universality in biology. Its microscopic origin may be a physical and mathematical challenge. Natural evolution is accurately reduced to the continuous one, “weak” and “strong” Gould-Eldredge spurts. The discovery of writing, i.e. non-genetic, long range, collective information transfer from generation to generation with human rather than natural selection, leads to post-evolution. Technological post-evolution is exponentially rapid and may lead to the extinction of a civilization. This might resolve the Fermi-Hart paradox: if extra-terrestrial intelligence exists, why it cannot be contacted?
Keywords: Survival curve; Lifetables; Evolution; Bifurcation (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199002927
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:273:y:1999:i:3:p:486-494
DOI: 10.1016/S0378-4371(99)00292-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().