Fractality, chaos, and reactions in imperfectly mixed open hydrodynamical flows
Á Péntek,
G Károlyi,
I Scheuring,
T Tél,
Z Toroczkai,
J Kadtke and
C Grebogi
Physica A: Statistical Mechanics and its Applications, 1999, vol. 274, issue 1, 120-131
Abstract:
We investigate the dynamics of tracer particles in time-dependent open flows. If the advection is passive the tracer dynamics is shown to be typically transiently chaotic. This implies the appearance of stable fractal patterns, so-called unstable manifolds, traced out by ensembles of particles. Next, the advection of chemically or biologically active tracers is investigated. Since the tracers spend a long time in the vicinity of a fractal curve, the unstable manifold, this fractal structure serves as a catalyst for the active process. The permanent competition between the enhanced activity along the unstable manifold and the escape due to advection results in a steady state of constant production rate. This observation provides a possible solution for the so-called “paradox of plankton”, that several competing plankton species are able to coexists in spite of the competitive exclusion predicted by classical studies. We point out that the derivation of the reaction (or population dynamics) equations is analog to that of the macroscopic transport equations based on a microscopic kinetic theory whose support is a fractal subset of the full phase space.
Date: 1999
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199004082
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:274:y:1999:i:1:p:120-131
DOI: 10.1016/S0378-4371(99)00408-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().