Formation of colony patterns by a bacterial cell population
M Matsushita,
J Wakita,
H Itoh,
K Watanabe,
T Arai,
T Matsuyama,
H Sakaguchi and
M Mimura
Physica A: Statistical Mechanics and its Applications, 1999, vol. 274, issue 1, 190-199
Abstract:
Bacterial species Bacillus subtilis is known to exhibit various colony patterns, such as diffusion-limited aggregation (DLA)-like, compact Eden-like, dense branching morphology (DBM)-like, concentric ring-like and disk-like, depending on the substrate softness and nutrient concentration. We have established the morphological diagram of colony patterns, and examined and characterized both macroscopically and microscopically how they grow. For instance, we have found that there seem to be two kinds of bacterial cells; active and inactive cells, the former of which drive colony interfaces outward. The active cells are particularly distinguished from the inactive ones at the tips of growing branches of a DBM-like colony as the characteristic fingernail structure. We have also found that the concentric ring-like colony is formed as a consequence of alternate repetition of advancing and resting of the growing interface which consists of active cells. Based on our observations, we have constructed a phenomenological but unified model which produces characteristic colony patterns. It is a reaction–diffusion type model for the population density of bacterial cells and the concentration of nutrient. The essential assumption is that there exist two types of bacterial cells; active cells that move actively, grow and perform cell division, and inactive ones that do nothing at all. Our model is found to be able to reproduce globally all the colony patterns seen in the experimentally obtained morphological diagram, and is phenomenologically quite satisfactory.
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199003283
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:274:y:1999:i:1:p:190-199
DOI: 10.1016/S0378-4371(99)00328-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().