Applications of statistical mechanics to non-brownian random motion
Ryszard Kutner and
Krzysztof Wysocki
Physica A: Statistical Mechanics and its Applications, 1999, vol. 274, issue 1, 67-84
Abstract:
We analysed discrete and continuous Weierstrass–Mandelbrot representations of the Lévy flights occasionally interrupted by spatial localizations. We chose the discrete representation to easily detect by Monte Carlo simulation which stochastic quantity could be a candidate for describing the real processes. We found that the particle propagator is able to reveal surprisingly close, stable long-range algebraic tail. Unfortunately, long flights present in the system make, in practice, the particle mean-square displacement an irregular step-like function; such a behavior was expected since it is an experimental reminiscence of divergence of the mean-square displacement, predicted by the theory. We developed the continuous representation in the context of random motion of a particle in an amorphous environment; we established a correspondence between the stochastic quantities of both representations in which the latter quantities contain some material constants. The material constants appear due to the thermal average of the space-dependent stretch exponent which defines the probability of the particle passing a given distance. This averaging was performed for intermediate or even high temperatures, as well as for low or even intermediate internal friction regimes where long but not extremely long flights are readily able to construct a significant part of the Lévy distribution. This supplies a kind of self-cut-off of the length of flights. By way of example, we considered a possibility of observing the Lévy flights of hydrogen in amorphous low-concentration, high-temperature Pd85Si15H7.5 phase; this conclusion is based on the results of a real experiment (Driesen et al., in: Janot et al. (Eds.), Atomic Transport and Defects in Metals by Neutron Scattering, Proceedings in Physics, Vol. 10, Springer, Berlin, 1986, p. 126; Richter et al., Phys. Rev. Lett. 57 (1986) 731; Driesen, Doctoral Thesis, Antwerpen University, 1987), performed by detecting the incoherent quasielastic scattering of thermal neutrons. We emphasize that the observed HWHM ∼kβ, where exponent β is distinctly smaller than 2, could be caused by these long flights of hydrogen.
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199003131
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:274:y:1999:i:1:p:67-84
DOI: 10.1016/S0378-4371(99)00313-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().