Charge inversion in DNA–amphiphile complexes: possible application to gene therapy
Paulo S Kuhn,
Yan Levin and
Marcia C Barbosa
Physica A: Statistical Mechanics and its Applications, 1999, vol. 274, issue 1, 8-18
Abstract:
We study complex formation between the DNA and cationic amphiphilic molecules. As the amphiphile is added to the solution containing DNA, a cooperative binding of surfactants to the DNA molecules is found. This binding transition occurs at a specific density of amphiphile, which is strongly dependent on the concentration of the salt and on the hydrophobicity of the surfactant molecules. We find that for amphiphiles which are sufficiently hydrophobic, a charge neutralization, or even charge inversion of the complex is possible. This is of particular importance in applications to gene therapy, for which the functional delivery of specific base sequence into living cells remains an outstanding problem. The charge inversion could, in principle, allow the DNA–surfactant complexes to approach the negatively charged cell membranes permitting the transfection to take place.
Date: 1999
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199004094
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:274:y:1999:i:1:p:8-18
DOI: 10.1016/S0378-4371(99)00409-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().