Extended moment method for electrons in semiconductors
Henning Struchtrup
Physica A: Statistical Mechanics and its Applications, 2000, vol. 275, issue 1, 229-255
Abstract:
The semiclassical Boltzmann equation for electrons in semiconductors with the Kane dispersion law or the parabolic band approximation is considered and systems of moment equations with an arbitrary number of moments are derived. First, the paper deals with spherical harmonics in the formalism of symmetric trace-free tensors. The collision frequencies are carefully studied for the physical properties of silicon. Then, for the parabolic band approximation, the hierarchy of equations for full moments of the phase density and the corresponding closure problem is discussed. In particular, a set of 2R scalar and vectorial moments is considered. To answer the question which number R one has to chose in order to retain the physical contents of the Boltzmann equation, the moment equations are examined in the drift-diffusion limit and in an infinite crystal in a homogeneous electric field (transient and stationary cases) for increasing number of moments R. The number R must be considered to be sufficient, if its further increase does not change the result considerably and the appropriate numbers for the processes are given.
Keywords: Electron transport; Semiconductors; Boltzmann equation; Moment method (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199004185
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:275:y:2000:i:1:p:229-255
DOI: 10.1016/S0378-4371(99)00418-5
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().