Prediction of the thermal conductivity of gases based on the Rainwater–Friend theory and a new corresponding states function
B Najafi,
Roya Araghi,
J.c Rainwater,
Saman Alavi and
R.f Snider
Physica A: Statistical Mechanics and its Applications, 2000, vol. 275, issue 1, 48-69
Abstract:
The Rainwater–Friend theory is used for the evaluation of the initial density dependence of the thermal conductivity of the noble gases using accurate realistic potentials. This theory, which was originally developed for spherically symmetric potentials, is adapted for the calculation of the initial density dependence of the translational contribution of the thermal conductivity of polyatomic gases. The internal state contribution is evaluated using a combination of Mason–Monchick theory and hard-sphere Enskog theory. At high density, beyond the range of the Rainwater–Friend theory, a deviation thermal conductivity function has been presented. With the help of this function, an easily usable corresponding-states function for the calculation of the thermal conductivity of supercritical gases has been developed, which is valid over a wide temperature range and for pressures up to 400 MPa.
Keywords: Thermal conductivity; High-pressure thermal conductivity; Second thermal conductivity virial coefficient; Rainwater–Friend theory (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199004136
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:275:y:2000:i:1:p:48-69
DOI: 10.1016/S0378-4371(99)00413-6
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().