Fractional reaction–diffusion
B.i Henry and
S.l Wearne
Physica A: Statistical Mechanics and its Applications, 2000, vol. 276, issue 3, 448-455
Abstract:
We derive a fractional reaction–diffusion equation from a continuous-time random walk model with temporal memory and sources. The equation provides a general model for reaction–diffusion phenomena with anomalous diffusion such as occurs in spatially inhomogeneous environments. As a first investigation of this equation we consider the special case of single species fractional reaction–diffusion in one dimension and show that the fractional diffusion does not by itself precipitate a Turing instability.
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199004690
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:276:y:2000:i:3:p:448-455
DOI: 10.1016/S0378-4371(99)00469-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().