Spatial particle condensation for an exclusion process on a ring
N. Rajewsky,
T. Sasamoto and
E.R. Speer
Physica A: Statistical Mechanics and its Applications, 2000, vol. 279, issue 1, 123-142
Abstract:
We study the stationary state of a simple exclusion process on a ring which was recently introduced by Arndt et al. (J. Phys. A 31 (1998) L45; J. Stat. Phys. 97 (1999) 1). This model exhibits spatial condensation of particles. It has been argued (J. Phys. A 31 (1998) L45; cond-mat/9809123) that the model has a phase transition from a “mixed phase” to a “disordered phase”. However, in this paper exact calculations are presented which, we believe, show that in the framework of a grand canonical ensemble there is no such phase transition. An analysis of the fluctuations in the particle density strongly suggests that the same result also holds for the canonical ensemble and suggests the existence of extremely long (but finite) correlation lengths (for example 1070 sites) in the infinite system at moderate parameter values in the mixed regime.
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199005373
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:279:y:2000:i:1:p:123-142
DOI: 10.1016/S0378-4371(99)00537-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().