Variational extensions of the mean spherical approximation
L. Blum and
M. Ubriaco
Physica A: Statistical Mechanics and its Applications, 2000, vol. 279, issue 1, 224-235
Abstract:
In a previous work we have proposed a method to study complex systems with objects of arbitrary size. For certain specific forms of the atomic and molecular interactions, surprisingly simple and accurate theories (The Variational Mean Spherical Scaling Approximation, VMSSA) [(Velazquez, Blum J. Chem. Phys. 110 (1990) 10931; Blum, Velazquez, J. Quantum Chem. (Theochem), in press)] can be obtained. The basic idea is that if the interactions can be expressed in a rapidly converging sum of (complex) exponentials, then the Ornstein–Zernike equation (OZ) has an analytical solution. This analytical solution is used to construct a robust interpolation scheme, the variation mean spherical scaling approximation (VMSSA). The Helmholtz excess free energy ΔA=ΔE−TΔS is then written as a function of a scaling matrix Γ. Both the excess energy ΔE(Γ) and the excess entropy ΔS(Γ) will be functionals of Γ. In previous work of this series the form of this functional was found for the two- (Blum, Herrera, Mol. Phys. 96 (1999) 821) and three-exponential closures of the OZ equation (Blum, J. Stat. Phys., submitted for publication). In this paper we extend this to M Yukawas, a complete basis set: We obtain a solution for the one-component case and give a closed-form expression for the MSA excess entropy, which is also the VMSSA entropy.
Keywords: Fluids; Yukawa interactions; Variational scaling mean spherical approximation (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199005348
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:279:y:2000:i:1:p:224-235
DOI: 10.1016/S0378-4371(99)00534-8
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().