Chromatic polynomials, Potts models and all that
Alan D Sokal
Physica A: Statistical Mechanics and its Applications, 2000, vol. 279, issue 1, 324-332
Abstract:
The q-state Potts model can be defined on an arbitrary finite graph, and its partition function encodes much important information about that graph, including its chromatic polynomial, flow polynomial and reliability polynomial. The complex zeros of the Potts partition function are of interest both to statistical mechanicians and to combinatorists. I give a pedagogical introduction to all these problems, and then sketch two recent results: (a) Construction of a countable family of planar graphs whose chromatic zeros are dense in the whole complex q-plane except possibly for the disc |q−1|<1. (b) Proof of a universal upper bound on the q-plane zeros of the chromatic polynomial (or antiferromagnetic Potts-model partition function) in terms of the graph's maximum degree.
Keywords: Chromatic polynomial; Potts model; Antiferromagnetic Potts model (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199005191
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:279:y:2000:i:1:p:324-332
DOI: 10.1016/S0378-4371(99)00519-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().