EconPapers    
Economics at your fingertips  
 

Statistical self-similarity of one-dimensional growth processes

Michael Prähofer and Herbert Spohn

Physica A: Statistical Mechanics and its Applications, 2000, vol. 279, issue 1, 342-352

Abstract: For one-dimensional growth processes we consider the distribution of the height above a given point of the substrate and study its scale invariance in the limit of large times. We argue that for self-similar growth from a single seed the universal distribution is the Tracy–Widom distribution from the theory of random matrices and that for the growth from a flat substrate it is some other, only numerically determined distribution. In particular, for the polynuclear growth model in the droplet geometry the height maps onto the longest increasing subsequence of a random permutation, from which the height distribution is identified as the Tracy–Widom distribution.

Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199005178
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:279:y:2000:i:1:p:342-352

DOI: 10.1016/S0378-4371(99)00517-8

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:279:y:2000:i:1:p:342-352