On kink states of ferromagnetic chains
Ky-Thuan Bach and
Nicolas Macris
Physica A: Statistical Mechanics and its Applications, 2000, vol. 279, issue 1, 386-397
Abstract:
We study kink states of quantum, ferromagnetic, easy axis spin 12 chains at zero temperature. These are produced by applying opposite magnetic fields on the two end sites of the chain. For sufficiently strong anisotropy and boundary field, we obtain estimates on the wave function of the lowest energy states in sectors with fixed third component of the total spin. These estimates imply that the magnetization profile has a kink structure with a well-defined location and a finite width. The energies of kink states in different sectors are exponentially close as long as they are not located near the boundaries. The basic tool that we use here is the principle of exponential localization of eigenvectors. We illustrate the method in the simplest case of the Heisenberg XXZ model and then show how it can be generalized to more complicated models. In the particular case of the Heisenberg XXZ model our results are consistent with the exact kink wave functions known for a special value of the boundary magnetic field.
Keywords: Ferromagnet; Kink; Interface; Exponential localization; Heisenberg model; Quantum fluctuations (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437199005324
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:279:y:2000:i:1:p:386-397
DOI: 10.1016/S0378-4371(99)00532-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().