Formation and polarization of dipolar chains
Jiun-Yan Huang and
Pik-Yin Lai
Physica A: Statistical Mechanics and its Applications, 2000, vol. 281, issue 1, 105-111
Abstract:
Using polymer physics theory, we calculate the free energy difference of a single dipolar hard sphere chain and that of a dipolar fluid without chain structure at low density. The condition for the formation of a single dipolar chain is derived. A dipolar chain will be formed only when the dipole moment is stronger than a threshold value. For a dipolar chain consisting of N dipoles, the total dipole moment distribution is calculated to be a Gaussian function with finite-N correction. For a system consisting of many monodisperse dipolar chains, mean field calculations show that a phase transition occurs for sufficiently strong dipole strength or low enough temperature. The spontaneous polarization of the system and the critical dipole strength are also obtained. Furthermore, the chain length distribution function is obtained by the variational method.
Keywords: Dipolar fluid; Polymer (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100000431
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:281:y:2000:i:1:p:105-111
DOI: 10.1016/S0378-4371(00)00043-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().