Crossing probabilities in critical 2-D percolation and modular forms
Peter Kleban
Physica A: Statistical Mechanics and its Applications, 2000, vol. 281, issue 1, 242-251
Abstract:
Crossing probabilities for critical 2-D percolation on large but finite lattices have been derived via boundary conformal field theory. These predictions agree very well with numerical results. However, their derivation is heuristic and there is evidence of additional symmetries in the problem. This contribution gives a preliminary examination some unusual modular behavior of these quantities. In particular, the derivatives of the “horizontal” and “horizontal–vertical” crossing probabilities transform as a vector modular form, one component of which is an ordinary modular form and the other the product of a modular form with the integral of a modular form. We include consideration of the interplay between conformal and modular invariance that arises.
Keywords: Percolation; Crossing probabilities; Conformal field theory; Modular forms (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100000352
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:281:y:2000:i:1:p:242-251
DOI: 10.1016/S0378-4371(00)00035-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().