EconPapers    
Economics at your fingertips  
 

A stochastic grain growth model based on a variational principle for dissipative systems

Fabrizio Cleri

Physica A: Statistical Mechanics and its Applications, 2000, vol. 282, issue 3, 339-354

Abstract: A stochastic model for the evolution of a cellular network driven by dissipative forces is presented. The model is based on a variational formulation for the dissipated power, from which we obtain an expression for the transition-rate generating function to be used in kinetic Monte Carlo simulations. The model canonical variables are the positions and velocities of the network vertices where cell walls meet. We apply such a model to the study of grain growth in two dimensions, in which the network represents a cross-section of a polycrystalline microstructure and the cell walls represent grain boundaries. The results of the stochastic grain-growth model for relevant statistical quantities are compared to deterministic model results and analytic theories.

Keywords: Grain growth; Variational principles; Dissipative systems; Kinetic Monte Carlo (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710000087X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:282:y:2000:i:3:p:339-354

DOI: 10.1016/S0378-4371(00)00087-X

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:282:y:2000:i:3:p:339-354