On the origin of periodicity in dynamical systems
Jason A.C. Gallas
Physica A: Statistical Mechanics and its Applications, 2000, vol. 283, issue 1, 17-23
Abstract:
We prove a theorem establishing a direct link between macroscopically observed periodic motions and certain subsets of intrinsically discrete orbits which are selected naturally by the dynamics from the skeleton of unstable periodic orbits (UPOs) underlying classical and quantum dynamics. As a simple illustration, an infinite set of UPOs of the quadratic (logistic) map is used to build ab initio the familiar trigonometric and hyperbolic functions and to show that they are just the first members of an infinite hierarchy of functions supported by the UPOs. Although all microscopic periodicities of the skeleton involve integer (discrete) periods only, the macroscopic functions resulting from them have real (non-discrete) periods proportional to very complicate non-integer numbers, e.g. 2π and 2πi, where i=(−1)1/2.
Keywords: Periodicity; Quadratic map; UPOs; Periodic functions; Number theory (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100001230
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:283:y:2000:i:1:p:17-23
DOI: 10.1016/S0378-4371(00)00123-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().