Finite-size scaling method for the stability of atomic and molecular ions
Pablo Serra,
Sabre Kais and
Juan Pablo Neirotti
Physica A: Statistical Mechanics and its Applications, 2000, vol. 283, issue 1, 65-73
Abstract:
Phase transitions at absolute zero temperature can take place as some parameter in the Hamiltonian of the system is varied. For the Hamiltonian of N-electron atoms, this parameter is taken to be the nuclear charge. As the nuclear charge reaches a critical point, the quantum ground state changes its characters from being bound to being degenerate or absorbed by a continuum. We describe the large-dimension approximation and the finite-size scaling method to calculate the critical nuclear charge for which an atom can bind an extra electron to form a stable negative ion. Results show that, at most, only one electron can be added to a free atom in the gas phase. The existence of doubly charged atomic negative ions in a strong magnetic field will be discussed.
Keywords: Critical phenomena; Large D limit; Variational expansions (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100001291
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:283:y:2000:i:1:p:65-73
DOI: 10.1016/S0378-4371(00)00129-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().