Evolutionary freezing in a competitive population
N.f Johnson,
D.J.t Leonard,
P.m Hui and
T.s Lo
Physica A: Statistical Mechanics and its Applications, 2000, vol. 283, issue 3, 568-574
Abstract:
We show that evolution in a population of adaptive agents, repeatedly competing for a limited resource, can come to an abrupt halt. This transition from evolutionary to non-evolutionary behavior arises as the global resource level is changed, and is reminiscent of a phase transition to a frozen state. Its origin lies in the inductive decision-making of the agents, the limited global information that they possess and the dynamic feedback inherent in the system.
Keywords: Self-organized phenomena; Complex adaptive systems; Minority game (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100002302
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:283:y:2000:i:3:p:568-574
DOI: 10.1016/S0378-4371(00)00230-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().