Erosion–dilation analysis for experimental and synthetic microstructures of sedimentary rock
A. Tscheschel,
D. Stoyan and
R. Hilfer
Physica A: Statistical Mechanics and its Applications, 2000, vol. 284, issue 1, 46-58
Abstract:
Microstructures such as rock samples or simulated structures can be described and characterized by means of ideas of spatial statistics and mathematical morphology. A powerful approach is to transform a given 3D structure by operations of mathematical morphology such as dilation and erosion. This leads to families of structures, for which various characteristics can be determined, for example, porosity, specific connectivity number or correlation and connectivity functions. An application of this idea leads to a clear discrimination between a sample of Fontainebleau sandstone and two simulated samples.
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100001163
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:284:y:2000:i:1:p:46-58
DOI: 10.1016/S0378-4371(00)00116-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().