Jamming transition of pedestrian traffic at a crossing with open boundaries
Masakuni Muramatsu and
Takashi Nagatani
Physica A: Statistical Mechanics and its Applications, 2000, vol. 286, issue 1, 377-390
Abstract:
Pedestrian traffic at a crossing is investigated under the open boundary condition by the use of the lattice gas model of biased random walkers without the back step. The four types of walkers interact with each other at the crossing where there are random walkers going to the right, left, up, and down. It is found that a dynamical jamming transition from the moving state at low density to the stopped state at high density occurs at the critical density. The transition point depends on the strength of drift and decreases with increasing drift. The transition point does not depend on the length of roads connecting the crossing for the long road. Also, the pedestrian traffic with two types of walkers is studied where there are random walkers going to the right and up. It is compared with the pedestrian traffic with the four types of random walkers.
Keywords: Pedestrian flow; Traffic flow; Phase transition; Jam (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100003368
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:286:y:2000:i:1:p:377-390
DOI: 10.1016/S0378-4371(00)00336-8
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().