Exact eigenvalues of the Ising Hamiltonian in one-, two- and three-dimensions in the absence of a magnetic field
J.M. Dixon,
J.A. Tuszynski and
M.L.A. Nip
Physica A: Statistical Mechanics and its Applications, 2001, vol. 289, issue 1, 137-156
Abstract:
The Hamiltonian of the Ising model in one-, two- and three-dimensions has been analysed using unitary transformations and combinatorics. We have been able to obtain closed formulas for the eigenvalues of the Ising Hamiltonian for an arbitrary number of dimensions and sites. Although the solution provided assumes the absence of external magnetic fields an extension to include a magnetic field along the z-axis is readily extracted. Furthermore, generalisations to a higher number of spin components on each site are possible within this method. We made numerical comparisons with the partition function from the earlier analytical expressions known in the literature for one- and two-dimensional cases. We find complete agreement with these studies.
Keywords: ■; ■; ■ (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100003186
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:289:y:2001:i:1:p:137-156
DOI: 10.1016/S0378-4371(00)00318-6
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().