Non-Newtonian Poiseuille flow of a gas in a pipe
Mohamed Tij and
Andrés Santos
Physica A: Statistical Mechanics and its Applications, 2001, vol. 289, issue 3, 336-358
Abstract:
The Bhatnagar–Gross–Krook kinetic model of the Boltzmann equation is solved for the steady cylindrical Poiseuille flow fed by a constant gravity field. The solution is obtained as a perturbation expansion in powers of the field (through fourth order) and for a general class of repulsive potentials. The results, which are hardly sensitive to the interaction potential, suggest that the expansion is only asymptotic. A critical comparison with the profiles predicted by the Navier–Stokes equations shows that the latter fail over distances comparable to the mean free path. In particular, while the Navier–Stokes description predicts a monotonically decreasing temperature as one moves apart from the cylinder axis, the kinetic theory description shows that the temperature has a local minimum at the axis and reaches a maximum value at a distance of the order of the mean free path. Within that distance, the radial heat flows from the colder to the hotter points, in contrast to what is expected from the Fourier law. Furthermore, a longitudinal component of the heat flux exists in the absence of gradients along the longitudinal direction. Non-Newtonian effects, such as a non-uniform hydrostatic pressure and normal stress differences, are also present.
Keywords: Poiseuille flow; Non-Newtonian flow; Kinetic theory; BGK model (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100004052
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:289:y:2001:i:3:p:336-358
DOI: 10.1016/S0378-4371(00)00405-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().