Quenching and annealing in the minority game
E Burgos,
Horacio Ceva and
R.P.j Perazzo
Physica A: Statistical Mechanics and its Applications, 2001, vol. 294, issue 3, 539-546
Abstract:
We study the bar attendance model (BAM) and a generalized version of the minority game (MG) in which a number of agents self organize to match an attendance that is fixed externally as a control parameter. We compare the probabilistic dynamics used in the MG with one that we introduce for the BAM that makes better use of the same available information. The relaxation dynamics of the MG leads the system to long lived, metastable (quenched) configurations in which adaptive evolution stops in spite of being far from equilibrium. On the contrary, the BAM relaxation dynamics avoids the MG glassy state, leading to an equilibrium configuration. Finally, we introduce in the MG model the concept of annealing by defining a new procedure with which one can gradually overcome the metastable MG states, bringing the system to an equilibrium that coincides with the one obtained with the BAM.
Keywords: Minority game; Organization; Evolution (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101001364
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:294:y:2001:i:3:p:539-546
DOI: 10.1016/S0378-4371(01)00136-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().