Dynamic surface critical behavior of isotropic Heisenberg ferromagnets
M. Krech,
H. Karl and
H.W. Diehl
Physica A: Statistical Mechanics and its Applications, 2001, vol. 297, issue 1, 64-72
Abstract:
The effects of free surfaces on the dynamic critical behavior of isotropic Heisenberg ferromagnets are studied via phenomenological scaling theory, field-theoretic renormalization group tools, and high-precision computer simulations. An appropriate semi-infinite extension of the stochastic model J is constructed, the boundary terms of the associated dynamic field theory are identified, its renormalization in d⩽6 dimensions is clarified, and the boundary conditions it satisfies are given. Scaling laws are derived which relate the critical indices of the dynamic and static infrared singularities of surface quantities to familiar static bulk and surface exponents. Accurate computer-simulation data are presented for the dynamic surface structure factor; these are in conformity with the predicted scaling behavior and could be checked by appropriate scattering experiments.
Keywords: Surface critical behavior; Dynamic scaling; Surface structure function (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101000991
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:297:y:2001:i:1:p:64-72
DOI: 10.1016/S0378-4371(01)00099-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().