EconPapers    
Economics at your fingertips  
 

The extended Enskog operator for simple fluids with continuous potentials: single particle and collective properties

Kunimasa Miyazaki, I.M. de Schepper and Biman Bagchi

Physica A: Statistical Mechanics and its Applications, 2001, vol. 298, issue 1, 101-120

Abstract: We generalized the Enskog theory originally developed for the hard-sphere fluid to fluids with continuous potentials, such as the Lennard–Jones. We derived the expression for the k and ω dependent transport coefficient matrix which enables us to calculate the transport coefficients for arbitrary length and time scales. Our results reduce to the conventional Chapman–Enskog expression in the low density limit and to the conventional k dependent Enskog theory in the hard-sphere limit. As examples, the self-diffusion of a single atom, the vibrational energy relaxation, and the activated barrier crossing dynamics problem are discussed.

Keywords: Kinetic theory; Continuous potential; Enskog theory (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101002138
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:298:y:2001:i:1:p:101-120

DOI: 10.1016/S0378-4371(01)00213-8

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:298:y:2001:i:1:p:101-120