Nonlinear structures in electroencephalogram signals
L. Diambra,
C.P. Malta,
A. Capurro and
J. Fernández
Physica A: Statistical Mechanics and its Applications, 2001, vol. 300, issue 3, 505-520
Abstract:
We apply a nonlinear prediction algorithm to investigate the presence of nonlinear structure in electroencephalogram (EEG) recordings. The EEG signal could be modeled as a realization of a nonlinear model plus a residual noise (uncorrelated Gaussian noise). Using linear and nonlinear models we analyze the statistical nature of these residual noises in the case of epileptic patients and normal subjects. We found that the residual noise presents Gaussian distribution for epileptic patients if a nonlinear model is used whereas in the case of normal subjects the residual noise will exhibit a Gaussian distribution only if a linear model (autoregressive) is used. These results provide another evidence of the nonlinear character of the epileptic seizure recordings, while the normal EEG seems to be better described as linearly correlated noise.
Keywords: Electroencephalogram; Epilepsy; Nonlinear models (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101003521
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:300:y:2001:i:3:p:505-520
DOI: 10.1016/S0378-4371(01)00352-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().