Corrugation of roads
Joseph A. Both,
Daniel C. Hong and
Douglas A. Kurtze
Physica A: Statistical Mechanics and its Applications, 2001, vol. 301, issue 1, 545-559
Abstract:
We present a one dimensional model for the development of corrugations in roads subjected to compressive forces from a flux of cars. The cars are modeled as damped harmonic oscillators translating with constant horizontal velocity across the surface, and the road surface is subject to diffusive relaxation. We derive dimensionless coupled equations of motion for the positions of the cars and the road surface H(x,t), which contain two phenomenological variables: an effective diffusion constant Δ(H) that characterizes the relaxation of the road surface, and a function a(H) that characterizes the plasticity or erodibility of the road bed. Linear stability analysis shows that corrugations grow if the speed of the cars exceeds a critical value, which decreases if the flux of cars is increased. Modifying the model to enforce the simple fact that the normal force exerted by the road can never be negative seems to lead to restabilized, quasi-steady road shapes, in which the corrugation amplitude and phase velocity remain fixed.
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101004253
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:301:y:2001:i:1:p:545-559
DOI: 10.1016/S0378-4371(01)00425-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().