Transmission of stress in granular materials as a problem of statistical mechanics
S.F. Edwards and
D.V. Grinev
Physica A: Statistical Mechanics and its Applications, 2001, vol. 302, issue 1, 162-186
Abstract:
We consider the problem of stress transmission in granular materials. We formulate the simplest statically determinate problem of stress transmission through a static granular material. This is the case when grains are rigid and have an average coordination number of z̄=d+1. Under this condition the system of Newton's equations of interparticle force and torque balance is complete. This means that there exists a complete set of equations for the macroscopic stress tensor σij(r) i.e., the d (where d is the dimension of the problem) equations of force balance ∇jσij(r)=gi(r) have to be supported by d(d−1)/2 equations. These equations have their origin in Newton's laws of interparticle force and torque balance and incorporate tensorial geometrical characteristics of the packing. We conjecture that in order to have a coherent and self-consistent continuum theory of stress transmission in static granular media it is necessary to link the averaging procedure to the concept of compactivity. We emphasize that although real granular materials have many features ignored within the proposed framework it is essential for making progress to derive equations of stress transmission for the simplest model, as opposed to guessing and postulating.
Keywords: Stress transmission; Granular materials; Random packings; Volume function; Compactivity (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101004629
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:302:y:2001:i:1:p:162-186
DOI: 10.1016/S0378-4371(01)00462-9
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().