EconPapers    
Economics at your fingertips  
 

Complexity through nonextensivity

William Bialek, Ilya Nemenman and Naftali Tishby

Physica A: Statistical Mechanics and its Applications, 2001, vol. 302, issue 1, 89-99

Abstract: The problem of defining and studying complexity of a time series has interested people for years. In the context of dynamical systems, Grassberger has suggested that a slow approach of the entropy to its extensive asymptotic limit is a sign of complexity. We investigate this idea further by information theoretic and statistical mechanics techniques and show that these arguments can be made precise, and that they generalize many previous approaches to complexity, in particular, unifying ideas from the physics literature with ideas from learning and coding theory; there are even connections of this statistical approach to algorithmic or Kolmogorov complexity. Moreover, a set of simple axioms similar to those used by Shannon in his development of information theory allows us to prove that the divergent part of the subextensive component of the entropy is a unique complexity measure. We classify time series by their complexities and demonstrate that beyond the “logarithmic” complexity classes widely anticipated in the literature there are qualitatively more complex, “power-law” classes which deserve more attention.

Date: 2001
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101004447
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:302:y:2001:i:1:p:89-99

DOI: 10.1016/S0378-4371(01)00444-7

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:302:y:2001:i:1:p:89-99