Growing random networks with fitness
G. Ergün and
G.J. Rodgers
Physica A: Statistical Mechanics and its Applications, 2002, vol. 303, issue 1, 261-272
Abstract:
Three models of growing random networks with fitness-dependent growth rates are analysed using the rate equations for the distribution of their connectivities. In the first model (A), a network is built by connecting incoming nodes to nodes of connectivity k and random additive fitness η, with rate (k−1)+η. For η>0 we find the connectivity distribution is power law with exponent γ=〈η〉+2. In the second model (B), the network is built by connecting nodes to nodes of connectivity k, random additive fitness η and random multiplicative fitness ζ with rate ζ(k−1)+η. This model also has a power law connectivity distribution, but with an exponent which depends on the multiplicative fitness at each node. In the third model (C), a directed graph is considered and is built by the addition of nodes and the creation of links. A node with fitness (α,β), i incoming links and j outgoing links gains a new incoming link with rate α(i+1), and a new outgoing link with rate β(j+1). The distributions of the number of incoming and outgoing links both scale as power laws, with inverse logarithmic corrections.
Keywords: Growing network; Fitness (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101004083
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:303:y:2002:i:1:p:261-272
DOI: 10.1016/S0378-4371(01)00408-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().