A model for the evolution of economic systems in social networks
A.S. Elgazzar
Physica A: Statistical Mechanics and its Applications, 2002, vol. 303, issue 3, 543-551
Abstract:
A model for the evolution of economic systems is defined on a one-dimensional lattice using Pareto optimality. Pareto optimality is shown to maximize the total payoff of all agents in comparison to the Nash optimality. The small-world networks are found to be closer to the real social systems than both regular and random lattices. Then, the model is generalized to small-world networks that display different dynamics from the one-dimensional case.
Keywords: Evolutionary economic models; Social networks; Pareto optimality (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101005076
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:303:y:2002:i:3:p:543-551
DOI: 10.1016/S0378-4371(01)00507-6
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().