Fingerprints of nonextensive thermodynamics in a long-range Hamiltonian system
Vito Latora,
Andrea Rapisarda and
Constantino Tsallis
Physica A: Statistical Mechanics and its Applications, 2002, vol. 305, issue 1, 129-136
Abstract:
We study the dynamics of a Hamiltonian system of N classical spins with infinite-range interaction. We present numerical results which confirm the existence of metaequilibrium quasi stationary states (QSS), characterized by non-Gaussian velocity distributions, anomalous diffusion, Lévy walks and dynamical correlation in phase-space. We show that the thermodynamic limit (TL) and the infinite-time limit (ITL) do not commute. Moreover, if the TL is taken before the ITL the system does not relax to the Boltzmann–Gibbs equilibrium, but remains in this new equilibrium state where nonextensive thermodynamics seems to apply.
Keywords: Hamiltonian dynamics; Long-range interaction; Out-of-equilibrium statistical mechanics (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101006513
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:305:y:2002:i:1:p:129-136
DOI: 10.1016/S0378-4371(01)00651-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().