Information of sequences and applications
Claudio Bonanno,
Stefano Galatolo and
Giulia Menconi
Physica A: Statistical Mechanics and its Applications, 2002, vol. 305, issue 1, 196-199
Abstract:
In this short note, we outline some results about complexity of orbits of a dynamical system, entropy and initial condition sensitivity in weakly chaotic dynamical systems. We present a technique to estimate orbit complexity by the use of data compression algorithms. We also outline how this technique has been applied by our research group to dynamical systems and to DNA sequences.
Keywords: Information; Complexity of a single orbit; Entropy; DNA sequence (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101006616
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:305:y:2002:i:1:p:196-199
DOI: 10.1016/S0378-4371(01)00661-6
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().