Clustering in N-body gravitating systems
Maurizio Bottaccio,
Luciano Pietronero,
Alessandro Amici,
Paolo Miocchi,
Roberto Capuzzo Dolcetta and
Marco Montuori
Physica A: Statistical Mechanics and its Applications, 2002, vol. 305, issue 1, 247-252
Abstract:
Self-gravitating systems have acquired growing interest in statistical mechanics, due to the peculiarities of the 1/r potential. Indeed, the usual approach of statistical mechanics cannot be applied to a system of many point particles interacting with the Newtonian potential, because of (i) the long-range nature of the 1/r potential and of (ii) the divergence at the origin. We study numerically the evolutionary behavior of self-gravitating systems with periodical boundary conditions, starting from simple initial conditions. We do not consider in the simulations additional effects as the (cosmological) metric expansion and/or sophisticated initial conditions, since we are interested whether and how gravity by itself can produce clustered structures. We are able to identify well-defined correlation properties during the evolution of the system, which seem to show a well-defined thermodynamic limit, as opposed to the properties of the “equilibrium state”. Gravity-induced clustering also shows interesting self-similar characteristics.
Keywords: Classical statistical mechanics; Few- and many-body systems; Non-extensive thermodynamics (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437101006707
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:305:y:2002:i:1:p:247-252
DOI: 10.1016/S0378-4371(01)00670-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().