Anomalous diffusion and Lévy distribution of particle velocity in soft-mode turbulence in electroconvection
Koyo Tamura,
Yoshiki Hidaka,
Yusril Yusuf and
Shoichi Kai
Physica A: Statistical Mechanics and its Applications, 2002, vol. 306, issue C, 157-168
Abstract:
We study the complex behavior in soft-mode turbulence (SMT), a recently discovered type of spatiotemporal chaos observed in electrohydrodynamic instability (EHD) of a nematic liquid crystal with homeotropic alignment. A particle, small compared to the characteristic length of the macroscopic flow, injected in SMT travels with random velocity such as an active Brownian motion. Tracking the particle trajectory induces changes in the flow velocity as a function of space and time (the Lagrange picture). The mean amplitude of the velocity is linearly proportional to the control parameter ε, normalized voltage in EHD. The probability density distribution of the particle velocity changes from Lévy for small ε to Gaussian distribution for large ε through intermediate distributions. The different regimes of anomalous diffusions are also observed. The stochastic properties of SMT are discussed based on these results.
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102004946
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:306:y:2002:i:c:p:157-168
DOI: 10.1016/S0378-4371(02)00494-6
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().