Wavelet transform based multifractal formalism in outlier detection and localisation for financial time series
Zbigniew R. Struzik and
Arno P.J.M. Siebes
Physica A: Statistical Mechanics and its Applications, 2002, vol. 309, issue 3, 388-402
Abstract:
We present a method of detecting and localising outliers in financial time series and other stochastic processes. The method checks the internal consistency of the scaling behaviour of the process within the paradigm of the multifractal spectrum. Deviation from the expected spectrum is interpreted as the potential presence of outliers. The detection part of the method is then supplemented by the localisation analysis part, using the local scaling properties of the time series. Localised outliers can then be removed one by one, with the possibility of dynamic verification of spectral properties. Both the multifractal spectrum formalism and the local scaling properties of the time series are implemented on the wavelet transform modulus maxima tree.
Keywords: Multifractal analysis; Wavelet transform; Hölder exponent; Outlier detection (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102005526
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:309:y:2002:i:3:p:388-402
DOI: 10.1016/S0378-4371(02)00552-6
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().