Zero-temperature dynamics for the ferromagnetic Ising model on random graphs
Olle Häggström
Physica A: Statistical Mechanics and its Applications, 2002, vol. 310, issue 3, 275-284
Abstract:
We consider Glauber dynamics at zero temperature for the ferromagnetic Ising model on the usual random graph model on N vertices, with on average γ edges incident to each vertex, in the limit as N→∞. Based on numerical simulations, Svenson (Phys. Rev. E 64 (2001) 036122) reported that the dynamics fails to reach a global energy minimum for a range of values of γ. The present paper provides a mathematically rigorous proof that this failure to find the global minimum in fact happens for allγ>0. A lower bound on the residual energy is also given.
Keywords: Ising model; Random graph; Glauber dynamics; Local search (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102007975
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:310:y:2002:i:3:p:275-284
DOI: 10.1016/S0378-4371(02)00797-5
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().