A path integral way to option pricing
Guido Montagna,
Oreste Nicrosini and
Nicola Moreni
Physica A: Statistical Mechanics and its Applications, 2002, vol. 310, issue 3, 450-466
Abstract:
An efficient computational algorithm to price financial derivatives is presented. It is based on a path integral formulation of the pricing problem. It is shown how the path integral approach can be worked out in order to obtain fast and accurate predictions for the value of a large class of options, including those with path-dependent and early exercise features. As examples, the application of the method to European and American options in the Black–Scholes model is illustrated. A particularly simple and fast semi-analytical approximation for the price of American options is derived. The results of the algorithm are compared with those obtained with the standard procedures known in the literature and found to be in good agreement.
Keywords: Econophysics; Stochastic processes; Path integral; Financial derivatives; Option pricing (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102007963
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:310:y:2002:i:3:p:450-466
DOI: 10.1016/S0378-4371(02)00796-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().