Calculation of the partition function using quantum genetic algorithms
I Grigorenko and
M.e Garcia
Physica A: Statistical Mechanics and its Applications, 2002, vol. 313, issue 3, 463-470
Abstract:
We present a new method based on genetic algorithms which permits to determine efficiently the partition function and the excitation spectrum of few-body quantum systems. In our approach, we use a variational formulation for the partition function Z of the system as a functional of its eigenfunctions. Z is obtained by applying the procedure of survival of the fittest, starting from initial random population. During the evolution the best representative converges to a set of eigenfunctions for a given Hamiltonian, while the partition function attains its global extremum (maximum) for a given temperature. We calculate the spectrum and the partition function in the case of few interacting particles in one-dimensional infinite potential well. We investigate formation of the Wigner crystal and study its melting induced by termal and quantum fluctuations.
Keywords: Genetic algorithms; Partition function; Wigner molecule (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102009883
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:313:y:2002:i:3:p:463-470
DOI: 10.1016/S0378-4371(02)00988-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().