Networks in life: scaling properties and eigenvalue spectra
I Farkas,
I Derényi,
H Jeong,
Z Néda,
Z.n Oltvai,
E Ravasz,
A Schubert,
A.-L Barabási and
T Vicsek
Physica A: Statistical Mechanics and its Applications, 2002, vol. 314, issue 1, 25-34
Abstract:
We analyze growing networks ranging from collaboration graphs of scientists to the network of similarities defined among the various transcriptional profiles of living cells. For the explicit demonstration of the scale-free nature and hierarchical organization of these graphs, a deterministic construction is also used. We demonstrate the use of determining the eigenvalue spectra of sparse random graph models for the categorization of small measured networks.
Keywords: Random networks; Collaboration graphs; Graph spectra; Spectral analysis of real-world graphs (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102011810
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:314:y:2002:i:1:p:25-34
DOI: 10.1016/S0378-4371(02)01181-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().