Numerical simulation of creeping fluid flow in reconstruction models of porous media
C. Manwart and
R. Hilfer
Physica A: Statistical Mechanics and its Applications, 2002, vol. 314, issue 1, 706-713
Abstract:
In this paper we examine representative examples of realistic three-dimensional models for porous media by comparing their geometry and permeability with those of the original experimental specimen. The comparison is based on numerically exact evaluations of permeability, porosity, specific internal surface, mean curvature, Euler number and local percolation probabilities. The experimental specimen is a three-dimensional computer tomographic image of Fontainebleau sandstone. The three models are stochastic reconstructions for which many of the geometrical characteristics coincide with those of the experimental specimen. We find that in spite of the similarity in the geometrical properties the permeability and formation factor can differ greatly between models and the experiment.
Keywords: Porous media; Computational physics; Numerical permeability (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102011937
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:314:y:2002:i:1:p:706-713
DOI: 10.1016/S0378-4371(02)01193-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().